Question		on	Answer	Marks	Guidance		
1	(i)		$y' = 1 + 8x^{-3}$	M2	M1 for just $8x^{-3}$ or $1 - 8x^{-3}$		
			$y'' = -24x^{-4}$ oe	A1		but not just $\frac{-24}{x^4}$ as AG	
				[3]			
1	(ii)		their $y' = 0$ soi	M1			
			x = -2	A1	A0 if more than one <i>x</i> -value	x = -2 must have been correctly obtained for all marks after first M1	
			y = -3	A1	A0 if more than one <i>y</i> -value		
			substitution of $x = -2$: $\frac{-24}{(-2)^4}$	M1	or considering signs of gradient either side of -2 with negative <i>x</i> -values	condone any bracket error	
			< 0 or = -1.5 oe correctly obtained isw	A1	signs for gradients identified to verify maximum	must follow from M1 A1 A0 M1 or better	
				[5]			
1	(iii)		y = -5 soi	B1			
			substitution of $x = -1$ in their y'	M1	may be implied by -7		
	grad normal = $^{-1}/_{\text{their}-7}$		M1*	may be implied by eg $^{1}/_{7}$			
			$y - \text{their}(-5) = \text{their}^{-1}(x1)$	M1dep*	or their $(-5) = \text{their } {}^{1}/_{7} \times (-1) + c$		
			-x + 7y + 34 = 0 oe	A1	allow eg $y - \frac{1}{7}x + \frac{34}{7} = 0$	must see = 0 do not allow eg $y = \frac{x}{7} - \frac{34}{7}$	
				[5]			

Question		Answer	Marks	Guidance			
2	(i)	$y' = 3x^2 - 5$ their $y' = 0$	M1 M1	_			
		(1.3, – 4.3) cao	A1	or A1 for $x = \pm \sqrt{\frac{5}{3}}$ oe soi			
		(- 1.3, 4.3) cao	A1	allow if not written as co-ordinates if pairing is clear	ignore any work relating to second derivative		
			[4]				
2	(ii)	crosses axes at (0, 0)	B1	condone <i>x</i> and <i>y</i> intercepts not written as co-ordinates; may be on graph	See examples in Appendix		
		and $(\pm \sqrt{5}, 0)$	B1	\pm (2.23 to 2.24) implies $\pm \sqrt{5}$			
		sketch of cubic with turning points in correct	B1		must meet the <i>x</i> -axis three times		
		quadrants and of correct orientation and			B0 eg if more than 1 point of inflection		
		passing through origin					
		x-intercepts $\pm \sqrt{5}$ marked	B1	may be in decimal form (± 2.2)			
	(111)		[4]				
2	(iii)	substitution of $x = 1$ in $f'(x) = 3x^2 - 5$	M1		sight of -2 does not necessarily imply		
					M1: check f'(x) = $3x^2 - 5$ is correct		
					in part (i)		
		-2	A1				
		$y - 4 = (\text{their f } '(1)) \times (x - 1) \text{ oe}$	M1*	$or - 4 = -2 \times (1) + c$			
		$-2x-2 = x^3 - 5x$ and completion to given result www	M1dep*				
		use of Factor theorem in $x^3 - 3x + 2$ with - or ± 2	M1	or any other valid method; must be shown	eg long division or comparing coefficients to find $(x - 1)(x^2 + x - 2)$ or $(x + 2)(x^2 - 2x + 1)$ is enough for M1		
		x = -2 obtained correctly	A1		with both factors correct NB M0A0 for $x(x^2 - 3) = -2$ so $x = -2$ or $x^2 - 3 = -2$ oe		
			[6]				

3	i	$y' = 3x^2 - 6x$	B1	condone one error		
		use of $y' = 0$	M1			
		(0, 1) or (2, -3)	A2	A1 for one correct or $x = 0$, 2		
				SC B1 for (0,1) from their y'		
		sign of y'' used to test or y'either	T1	Dep't on M1 or <i>y</i> either side or clear	5	
		side		cubic sketch		
	ii	y'(-1) = 3 + 6 = 9	B1			
		$3x^2 - 6x = 9$	M1	ft for their y'		
		<i>x</i> = 3	A1	implies the M1		
		At P $y = 1$	B1			
		grad normal = $-1/9$ cao	B1			
		y - 1 = -1/9 (x - 3)	M1	ft their (3, 1) and their grad, not 9		
		intercepts 12 and 4/3or use of	B1	ft their normal (linear)		
		$\int_{12}^{12} 4 \int_{12}^{12} dx dx (their permet)$				
		$\int_{0}^{12} \frac{4}{3} - \frac{1}{9} x dx$ (their normal)				13
		$\frac{1}{2} \times 12 \times \frac{4}{3}$ cao	A1		8	13

	•	7 2	N/1		
4	1	7-2x	M1		
		x = 2, gradient = 3	A1	differentiation must be used	
		x = 2, y = 4	B1		
		y – their 4 = their grad (x – 2)	M1	or use of $y =$ their $mx + c$ and subst (2, their 4), dependent on diffn	
		subst $y = 0$ in their linear eqn	M1	seen	
		completion to $x = \frac{2}{3}$ (ans given)	A1		6
	ii	f(1) = 0 or factorising to	1	or using quadratic formula	
		(x-1)(6-x) or $(x-1)(x-6)$		correctly to obtain $x = 1$	
		6 www	1		2
	iii	$\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$	M1	for two terms correct; ignore $+c$	
		value at $2 - $ value at 1	M1	ft attempt at integration only	
		$2\frac{1}{6}$ or 2.16 to 2.17	A1		
		$\frac{1}{2} \times \frac{4}{3} \times 4$ – their integral	M1		
		0.5 o.e.	A1		5

5	i	$3x^2 - 6$	2	1 if one error	2
	ii	$-\sqrt{2} < x < \sqrt{2}$	3	M1 for using their $y'=0$ B1 f.t. for both roots found	3
	iii	subst $x = -1$ in their y' [=-3] y = 7 when $x = -1y + 3x = 4x^{3} - 6x + 2 = -3x + 4(2, -2) c.a.o.$	B1 M1 A1 M1 A1,A1	f.t. f.t. 3 terms f.t.	
					6