Question		Answer$\begin{aligned} & y^{\prime}=1+8 x^{-3} \\ & y^{\prime \prime}=-24 x^{-4} \mathrm{oe} \end{aligned}$	MarksM2A1[3]	Guidance	
1	(i)			M1 for just $8 x^{-3}$ or $1-8 x^{-3}$	but not just $\frac{-24}{x^{4}}$ as AG
1	(ii)	their $y^{\prime}=0$ soi $\begin{aligned} & x=-2 \\ & y=-3 \end{aligned}$ substitution of $x=-2: \frac{-24}{(-2)^{4}}$ <0 or $=-1.5$ oe correctly obtained isw	M1 A1 A1 M1 A1 [5]	A0 if more than one x-value A0 if more than one y-value or considering signs of gradient either side of -2 with negative x-values signs for gradients identified to verify maximum	$x=-2$ must have been correctly obtained for all marks after first M1 condone any bracket error must follow from M1 A1 A0 M1 or better
1	(iii)	$\begin{aligned} & y=-5 \text { soi } \\ & \text { substitution of } x=-1 \text { in their } y^{\prime} \\ & \text { grad normal }=-1 / \text { their }-7 \\ & y-\operatorname{their}(-5)=\text { their } 1 / 7(x--1) \\ & -x+7 y+34=0 \text { oe } \end{aligned}$	B1 M1 M1* M1dep* A1 [5]	may be implied by -7 may be implied by eg $1 / 7$ or their $(-5)=$ their ${ }^{1 / 7} \times(-1)+c$ allow eg $y-\frac{1}{7} x+\frac{34}{7}=0$	must see $=0$ do not allow eg $y=\begin{aligned} & x \\ & 7\end{aligned}-\begin{gathered}34 \\ 7\end{gathered}$

Question		Answer	Marks	Guidance	
2	(i)		$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	or A1 for $x= \pm \sqrt{\frac{5}{3}}$ oe soi allow if not written as co-ordinates if pairing is clear	ignore any work relating to second derivative
2	(ii)	crosses axes at $(0,0)$ and $(\pm \sqrt{5}, 0)$ sketch of cubic with turning points in correct quadrants and of correct orientation and passing through origin x-intercepts $\pm \sqrt{ } 5$ marked	B1 B1 B1 B1 [4]	condone x and y intercepts not written as co-ordinates; may be on graph \pm (2.23 to 2.24) implies $\pm \sqrt{ } 5$ may be in decimal form ($\pm 2.2 \ldots$)	See examples in Appendix must meet the x-axis three times B0 eg if more than 1 point of inflection
2	(iii)	```substitution of \(x=1\) inf \(^{\prime}(x)=3 x^{2}-5\) - 2 \(y--4=\left(\right.\) their \(\left.\mathrm{f}^{\prime}(1)\right) \times(x-1)\) oe \(-2 x-2=x^{3}-5 x\) and completion to given result www use of Factor theorem in \(x^{3}-3 x+2\) with - or \(\pm 2\) \(x=-2\) obtained correctly```	$\begin{gathered} \text { M1 } \\ \\ \text { A1 } \\ \text { M1* } \\ \text { M1dep* } \\ \text { M1 } \\ \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	$\text { or }-4=-2 \times(1)+c$ or any other valid method; must be shown	sight of -2 does not necessarily imply M1: check $\mathrm{f}^{\prime}(x)=3 x^{2}-5$ is correct in part (i) eg long division or comparing coefficients to find $(x-1)\left(x^{2}+x-2\right)$ or $(x+2)\left(x^{2}-2 x+1\right)$ is enough for M1 with both factors correct NB M0A0 for $x\left(x^{2}-3\right)=-2$ so $x=-2$ or $x^{2}-3=-2$ oe

3	i	$\begin{aligned} & y^{\prime}=3 x^{2}-6 x \\ & \text { use of } y^{\prime}=0 \\ & (0,1) \text { or }(2,-3) \end{aligned}$ sign of $y^{\prime \prime}$ used to test or y^{\prime} either side $\begin{aligned} & y^{\prime}(-1)=3+6=9 \\ & 3 x^{2}-6 x=9 \\ & x=3 \\ & \text { At P } y=1 \\ & \text { grad normal }=-1 / 9 \text { cao } \\ & y-1=-1 / 9(x-3) \end{aligned}$ intercepts 12 and $4 / 3$ or use of $\begin{aligned} & \int_{0}^{12} 4 / 3-1 / 9 x \mathrm{~d} x \text { (their normal) } \\ & 1 / 2 \times 12 \times 4 / 3 \text { cao } \end{aligned}$	B1 M1 A2 T1 B1 M1 A1 B1 B1 M1 B1 A1	condone one error A1 for one correct or $x=0,2$ SC B1 for $(0,1)$ from their y^{\prime} Dep't on M1 or y either side or clear cubic sketch ft for their y^{\prime} implies the M1 ft their $(3,1)$ and their grad, not 9 ft their normal (linear)	5	13

